

Reliable, Low Cost Distributed Generator/Utility System Interconnect

NREL Quarterly Review Meeting

July 25-27, 2001

NREL TECHNICAL MONITOR: B. KROPOSKI

GE PROGRAM MANAGER: U. PATEL

GE Corporate Research & Development

GE Power Systems Energy Consulting

Program Structure

Base Year Schedule

Task Name	Duration	Start	Finish		1	Qtr	Qtr 1, 2001		Qtr 2, 20	01	Qt	r 3, 2001	Qtr		4, 2001	
				% Compl	Dec	_	_	Mar	Apr Ma		_		_	ct No	_	Qtr 1 Jan
1 Program Kick-off	1 day	Tue 1/2/01	Tue 1/2/01	100%	•	•										
2 Definition of requirements for Virtual Testbed	24 days	Tue 1/2/01	Fri 2/2/01	100%	1	-	•				1					
3 Develop Models of DG	153 days	Fri 2/2/01	Tue 9/4/01	88%				- 8			•					
4 Develop Load Models	127 days	Fri 2/2/01	Mon 7/30/01	100%			-				+(
5 Develop EPS Component Models	94 days	Fri 2/2/01	Wed 6/13/01	100%			-			7						
6 Setup and Validate Virtual Testbed	87 days	Fri 3/2/01	Mon 7/2/01	98%				_		-	Q(
7 Report - VTB	1 day	Tue 7/3/01	Tue 7/3/01	100%						Ģ	*					
8 Evaluate Power Quality	135 days	Mon 4/16/01	Fri 10/19/01	52%					_		(÷	V		
9 Evaluate Protection and Reliability	117 days	Thu 5/3/01	Fri 10/12/01	38%							•	٥	4			
10 Report - PQ, Protection case study	1 day	Mon 12/10/01	Mon 12/10/01	0%					All						•	
11 Identify Improvements to DG Design	4 wks	Tue 10/2/01	Mon 10/29/01	0%											8	
12 Identify DG-EPS Interface Requirements	4 wks	Tue 10/2/01	Mon 10/29/01	0%												
13 Report - DG Improvement and Interconnect Requirement	1 day	Fri 11/2/01	Fri 11/2/01	0%										*		
14 Conceptual DG-EPS Interface Design	6 wks	Fri 11/2/01	Thu 12/13/01	0%										,		
15 Report - Interconnect conceptual design	1 day	Thu 12/20/01	Thu 12/20/01	0%										7(2)	→	,
16 Final Report	3 wks	Fri 12/21/01	Thu 1/10/02	0%)

Virtual Test Bed - Structure

Why PSLF and Saber?

- •PSLF commercially available modeling tool for analyzing large system response
 - "Fundamental Frequency Program"
 - Power grid modeled algebraically \widetilde{V} ? \widetilde{I} ?(R ? j ?(X_L ? X_C)
 - < 5 Hz modulation bandwidth
 - Electromechanical oscillations and some controls modeled dynamically
 - Handles very large systems
- Saber powerful system modeling tools for mixed technologies
 - Detailed transient simulation
 - Entire system modeled by differential equations

$$V ? R ?I ? L ? \frac{dI}{dt} ? C ? ?I ? dt$$

- Unlimited bandwidth

Virtual Test Bed - PSLF Setup

- P1: PSE 12.5kV Feeder. Approx 1200 customers; mixed residential, commercial, light industrial. Candidate for beta test site.
- P2: Representative, but fictional system with 2 feeders, which can be looped. Explicit representation of 5 candidate DR locations, including transformers.
- P3: WSCC 12082 bus, 2291 generator model

Virtual Test Bed - PSLF Setup

Representative Distribution System Modeled in PSLF (P2):

- Two 12.5kV Mains
 - 28 node equivalent, including laterals
 - 240v and 600v secondaries with transformers represented
 - Substation LTC
 - 1200 kVAr Shunt bank on #1
 - SVR on Feeder 2
- 13,700 kW Load
 - 2831 kW pumps
 - 6467 kW other motors
 - 4371 kW static load
 - 36 dynamic models
- 6405 kW Distributed Generation
 - 5 equivalents, with dynamic models
 - 2 units with voltage and power regulation functions

Virtual Test Bed - Saber Setup

Saber

- S1: Simplified inverter based DG and single feeder EPS.
- S2: Medium complexity inverter based DG with local distribution
- S3: Full-order inverter based DG with PWM switching function

Virtual Test Bed - Model List

DG Models

- synchronous machine
- induction machine
- single and three-phase inverter

EPS models

- overhead line/cable
- circuit breaker
- surge arrestor
- fuse
- recloser
- transformer
- saturable inductor
- sectionalizer
- fault emulator

DG/EPS Building Blocks

- anti-islanding algorithms
- phase-lock loop
- over/under voltage relay
- over/under frequency relay
- over current relay
- impedance relay
- reverse power relay

Load Models

- cycle skipper
- phase-controlled load
- sump pump

The models are implemented at three complexity levels

Basis for Case Studies

Explore how systems work and identify systems issues

Steady-State Performance

- Voltage Profiles and Impacts
- Voltage Regulation
- Current and Thermal Impacts

Fundamental Frequency Dynamic Performance

- First Swing Stability Performance
- Monotonic Frequency and Voltage Impacts
- System Oscillations and Damping
- Flicker

Power Quality

- Grid stability
- DG reactive power control
- Unbalanced grid
- Harmonics
- Flicker
- DG Paralleling transient

Protection and Reliability

- Fault Behavior
- Anti-islanding protection
- Recloser Interactions
- Relay and Fuse Coordination
- Grounding
- Determine the impact of the utility connection on the design of DG power electronics.
- Determine the impact to the utility network of increased DG penetration.

Steady State Performance Example

<u>Investigations/Parameter variations made on</u> the Radial Study Feeder

- Penetration
- DG placement
- Regulator and LTC parameters and control
- Cap bank placement and control
- Voltage regulation by DG

Characteristics of the Radial Study Feeder

- •The DG provides 50% of the rated load of the feeder.
- The load is uniformly distributed along the feeder
- There is an SVR at the mid-point, just upstream of the DG.
- The SVR regulates the downstream voltage.
- The LTC regulates the substation bus.

Steady State Performance Example

Fundamental Frequency Dynamics Example

WSCC System response to a large disturbance

Conditions:

- Heavy Winter 2001 Load Level
- Fault at Raver
- Cleared in primary time by trip of 500kV line to Paul

Key:

Red: Base condition

Green: Load uniformly increased by 20% served by equal amount of inverter based

DGs with constant power control

Black: DGs with one anti-islanding scheme

Impact of widespread DG at the loads is benign and slightly beneficial...

However, aggressive trip characteristics could pose a system risk

Fault Performance Example

Key Findings from Case Studies

(What have we learned so far?, What's interesting?)

Power Quality

- Modest penetration of DG has relatively little effect on system voltage regulation.
- High penetrations add challenges for voltage regulation, and may require additional controls/intelligence/communication
- Large scale penetration of DGs at the load appear to be benign with respect to bulk system dynamic performance

Protection and Reliability

- Inverter based DG systems act essentially as ideal current sources.

 Therefore minimal fault current contributions, have little effect on overcurrent protection
- DGs designed with overly aggressive trip characteristics pose a system risk
- Active anti-islanding schemes in distribution systems with multiple DGs and significant motor loads appear to work well

Wrap-Up

TASKS

COMPLETION DATE

•Complete the fundamental research (power quality, protection and reliability) of DGs using VTB

October 2001

• Identify improvements in DG design and requirements for DG-EPS interface

October 2001

 Develop a conceptual hardware design for DG-EPS interface module December 2001

Participation in IEEE P1547

Ongoing

GE Corporate Research & Development

GE Power Systems Energy Consulting

Puget Sound Energy